A Comparative Analysis of Tree-Based Ensemble Methods for Detecting Imminent Lane Change Maneuvers in Connected Vehicle Environments

Author:

Mousa Saleh R.1,Bakhit Peter R.1,Osman Osama A.1,Ishak Sherif2

Affiliation:

1. Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA

2. Department of Civil and Environmental Engineering, The University of Alabama in Huntsville, Huntsville, AL

Abstract

Lane changing is one of the main contributors to car crashes in the U.S. The complexity of the decision-making process associated with lane changing makes such maneuvers prone to driving errors, and hence, increases the possibility of car crashes. Thus, researchers have been investigating ways to model and predict lane changing maneuvers for optimally designed crash avoidance systems. Such systems rely on the accuracy of detecting the onset of lane-change maneuvers, which requires comprehensive vehicle trajectory data. Connected Vehicles (CV) data provide opportunities for accurate modeling of lane changing maneuvers, especially with the variety of advanced tools available nowadays. The review of the literature indicates that most of the implemented modeling tools do not achieve reliable accuracy for such critical safety application of lane-change prediction. Recently, eXtreme Gradient Boosting (XGB) became a well-recognized algorithm among the computer science community in solving classification problems due to its accuracy, scalability, and speed. This study implements the XGB in predicting the onset of lane changing maneuvers using CV trajectory data. The performance of XGB is compared to three other tree-based algorithms namely, decision trees, gradient boosting, and random forests. The Next Generation SIMulation trajectory data are used to represent the high-resolution CV data. The results indicate that XGB is superior to the other algorithms with a high accuracy value of 99.7%. This outstanding accuracy is achieved when considering vehicle trajectory data two seconds prior to a potential lane change maneuver. The findings of this study are promising for detection of lane change maneuvers in CV environments.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3