Split Models for Predicting Multivehicle Crashes during High-Speed and Low-Speed Operating Conditions on Freeways

Author:

Abdel-Aty Mohamed1,Uddin Nizam2,Pande Anurag1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Central Florida, Orlando, FL 32816-2450

2. Department of Statistics and Actuarial Science, University of Central Florida, Orlando, FL 32816.

Abstract

The future of traffic management and highway safety lies in proactive traffic management systems. Crash prediction models that use real-time traffic flow variables measured through a series of loop detectors are the most important component of such systems. A previous crash prediction model was developed with the matched case–control logistic regression technique. Although the model achieved reasonable classification accuracy, it remained open to improvement because of the limited study area, sample size, and transferability issues. Therefore, the previous work had been extended. Multivehicle freeway crashes under high- and low-speed traffic conditions were found to differ in severity and in their mechanism. The distribution of 5-min average speeds obtained immediately before the crash from the loop detector station closest to the crash shows two approximate mound-shaped distributions. This distribution is used as the basis to separate the models for crashes occurring under the two speed conditions. The results show that, as expected, variables that entered in the final models (for crashes under high and low speeds) were not the same. However, they were found to be consistent with the probable mechanisms of crashes under the respective speed conditions. A possible implementation of the separate models with the use of the odds ratios and with the balancing of the threshold between achieving high classification of crash potential and the false alarm situation is presented.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3