Comparing Driving Cycle Development Methods Based on Markov Chains

Author:

Roy Frédérique1,Morency Catherine1

Affiliation:

1. Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montréal, Québec, Canada

Abstract

The transportation sector is a major contributor to greenhouse gas (GHG) emissions, accounting for 14% of global emissions in 2010 according to the United States Environmental Protection Agency. In Quebec, this share amounts to 43%, of which 80% is caused by road transport according to the MinistÉre de l’Environnement et de la Lutte contre les changements climatiques of QuÅbec. It is therefore essential to support the actions taken to reduce GHGs emissions from this sector and to quantify the impact of these actions. To do so, accurate and reliable emission models are needed. Driving cycles are defined as speed profiles over time and they are a key element of emission models. They represent driving behaviors specific to various road types in each region. The most widely used method to construct driving cycles is based on Markov chains and consists of concatenating small sections of speed profiles, called microtrips, following a transition matrix. Two of the main steps involved in the development of driving cycles are microtrip segmentation and microtrip classification. In this study, several combinations of segmentation and clustering methods are compared to generate the most reliable driving cycle. Results show that segmentation of microtrips with a fixed distance of 250 m and clustering of the microtrips by applying a principal component analysis on many key parameters related to their speed and acceleration provide the most accurate driving cycles.

Funder

natural sciences and engineering research council of canada

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3