Comparison of Unmanned Aerial Vehicle-LiDAR and Image-Based Mobile Mapping System for Assessing Road Geometry Parameters via Digital Terrain Models

Author:

Suleymanoglu Baris1,Gurturk Mert1ORCID,Yilmaz Yalcin1ORCID,Soycan Arzu1,Soycan Metin1

Affiliation:

1. Department of Geomatic Engineering, Yildiz Technical University, Istanbul, Turkey;bariss@yildiz.edu.tr (B.S.); yilmazy@yildiz.edu.tr (Y.Y.); topbas@yildiz.edu.tr (A.S.); soycan@yildiz.edu.tr (M.S.)

Abstract

Road condition analysis is an important research topic in many fields (such as intelligent transportation, road safety, road design analysis, and traffic analysis) and depends on road geometry parameters such as longitudinal profile and cross-slope. In this study, the extraction of road geometry parameters by unmanned aerial vehicle (UAV) with LiDAR and by a mobile photogrammetric system (MPS) designed by our research group was investigated. The purpose of this study was to obtain geometric parameters (such as road longitudinal profile and cross-slope) by using digital terrain model (DTM) surfaces derived from point cloud data acquired using UAV-LiDAR and MPS. For this purpose, a framework was developed for the extraction and comparison of longitudinal and cross-sectional profiles. First, the ground filtering approach was used to extract ground points and DTM surfaces generated from an appropriate interpolation algorithm by using ground points. Cross-sectional/longitudinal profiles of the road sections were extracted and compared with reference data. A comparison of the longitudinal profiles obtained from DTMs derived from the MPS and from UAV-LiDAR revealed root mean square error values of 1.8 cm and 2.3 cm, respectively. The average deviation of cross-slopes for both surfaces was 0.19% and 0.18%, respectively. These results show that road geometric parameters can be obtained from DTM surfaces with high accuracy. It can be concluded from the results of this study that MPS can be a favorable alternative for studies on road geometry parameters extraction.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3