Developing Car-Following Models for Winter Maintenance Operations Incorporating Machine Learning Methods

Author:

Kamjoo Ehsan1ORCID,Saedi Ramin2,Zockaie Ali1ORCID,Ghamami Mehrnaz1ORCID,Gates Timothy1ORCID,Talebpour Alireza3ORCID

Affiliation:

1. Michigan State University, East Lansing, MI

2. Amazon Inc., Sunnyvale, CA

3. University of Illinois Urbana-Champaign, Urbana, IL

Abstract

Car-following models have been explored thoroughly for different vehicle types, such as cars and trucks. Although snowplows can be classified as trucks, their unique physical and operational characteristics impose a distinct following behavior. Michigan Department of Transportation has recently tested a collision avoidance system to reduce rear-end crashes. The incorporated radar in this system provides valuable information, defining two objectives for this study: (1) investigating the impacts of snowplows on car-following behavior considering car–car and car–snowplow vehicle-type combinations; (2) exploring the effects of the proposed collision avoidance system on car-following behavior by comparing car-following models for collected data with and without such a system. Firstly, space and time headway analyses are performed to compare different vehicle-type combinations. Then, the Gipps’ model is calibrated, and two data-driven car-following models are trained incorporating support vector regression and a long short-term memory network. These models are calibrated/trained to evaluate the performance of models with and without considering the heterogeneity of driving behavior among road users. The results indicate that the presence of snowplows leads to statistically significant different car-following models. Besides, it is shown that the collision avoidance system slightly improves the behavior of the following vehicles, which is not statistically significant. Also, it is concluded that considering driving behavior heterogeneity leads to more realistic prediction of the following behavior, compared to assuming homogeneous driving styles in traffic. Finally, the performances of the three developed car-following models are compared. Developing specific models for winter maintenance operations is an early step toward developing microsimulation models for adverse weather conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Examination of Driver Interpretation and Response to Snowplow Rear-End Lighting Configurations;Proceedings of the Human Factors and Ergonomics Society Annual Meeting;2024-08-13

2. Investigating Mobility and Safety Impacts of Winter Maintenance Operations Using Connected Vehicle Data;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

3. Estimating Path Travel Costs in Large-Scale Networks Using Machine-Learning Techniques;Transportation Research Record: Journal of the Transportation Research Board;2023-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3