Mechanistic-Based Parametric Model for Predicting Rolling Resistance of Concrete Pavements

Author:

Balzarini Danilo1,Chatti Karim1,Zaabar Imen2,Butt Ali A.3,Harvey John T.3

Affiliation:

1. Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI

2. Department of Computer Science and Engineering, Michigan State University, East Lansing, MI

3. University of California Pavement Research Center, Davis, CA

Abstract

The structural rolling resistance (SRR) is the component of rolling resistance that occurs because of the viscoelastic deformation of the pavement structure. In this paper, a simple model to calculate the energy dissipation as a result of the SRR on rigid pavements is developed for use in applications such as life cycle cost analysis and life cycle assessment. First, the energy dissipated by different vehicles was calculated on 12 concrete pavement sections using a fully mechanistic approach. Using the program DYNASLAB to simulate the vehicles moving along the pavement sections, the energy dissipation was calculated as the work done by the vehicle to overcome the slope seen by the wheels because of the pavement deformation. The results were then used to develop a simple and rapid-to-use model to predict the energy dissipation on any jointed concrete pavement. The model consists of a simple predictive function that can provide the value of the SRR energy dissipation given the mechanical properties of the pavement section (slab thickness and stiffness, modulus of subgrade reaction, subgrade damping coefficient, pavement geometry, and load transfer efficiency) and the loading conditions (speed and loads). The model was based on a sensitivity analysis that was used to select the optimal set of structural and environmental factors.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3