Development of a Novel Framework for Hazardous Materials Placard Recognition System to Conduct Commodity Flow Studies Using Artificial Intelligence AlexNet Convolutional Neural Network

Author:

Gaweesh Sherif1ORCID,Khan Md Nasim1ORCID,Ahmed Mohamed M.1ORCID

Affiliation:

1. Department of Civil & Architectural Engineering, University of Wyoming, Laramie, WY

Abstract

Conducting hazardous materials (HAZMAT) commodity flow studies (CFS) is crucial for emergency management agencies. Identifying the types and amounts of hazardous materials being transported through a specified geographic area will ensure timely response if a HAZMAT incident takes place. CFS are usually conducted using manual data collection methods, which may expose the personnel to some risks by them being subjected to road traffic and different weather conditions for several hours. On other hand, the quality and accuracy of the collected HAZMAT data are affected by the skill and alertness of the data collectors. This study introduces a framework to collect HAZMAT transportation data exploiting advanced image processing and machine learning techniques on video feed. A promising convolutional neural network (CNN), named AlexNet was used to develop and test the automatic HAZMAT placard recognition framework. A solar-powered mobile video recording system was developed using high-resolution infra-red (IR) cameras, connected to a network video recorder (NVR) mounted on a mobile trailer. The developed system was used as the continuous data collection system. Manual data collection was also conducted at the same locations to calibrate and validate the newly developed system. The results showed that the proposed framework could achieve an accuracy of 95% in identifying HAZMAT placard information. The developed system showed significant benefits in reducing the cost of conducting HAZMAT CFS, as well as eliminating the associated risks that data collection personnel could face.

Funder

Pipeline and Hazardous Materials Safety Administration

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3