Real-Time Risk Assessment for Road Transportation of Hazardous Materials Based on GRU-DNN with Multimodal Feature Embedding

Author:

Yu Shanchuan,Li YiORCID,Xuan Zhaoze,Li Yishun,Li GangORCID

Abstract

In this paper, a gated recurrent unit–deep neural network (GRU-DNN) model integrated with multimodal feature embedding (MFE) is developed to evaluate the real-time risk of hazmat road transportation based on various types of data for contributing factors. MFE was incorporated into the framework of a deep learning model in which discrete variables, continuous variables, and images were uniformly embedded. GRU is a pre-trained sub-model, and the DNN is able to directly use the relative structure and weights of the GRU, improving the poor classification and recognition results due to insufficient samples. Additionally, the model is trained and validated based on hazmat road transportation database consisting of 2100 samples with 20 real-time contributing factors and four risk levels in China. The accuracy (ACC), precision (PR), recall (RE), F1-score (F1), and areas under receiver-operating-characteristic curves (AUC) of the proposed model and other commonly used models are compared as performance measurements in numerical examples. Finally, Carlini & Wagner attack and three defenses of adversarial training, dimensionality reduction and prediction similarity are proposed in the training to improve the robustness of the model, alleviating the impact of noise and error on small-sized samples. The results demonstrate that the average ACC of the model reaches 93.51% and 87.6% on the training and validation sets, respectively. The prediction of accidents resulting in injury is the most accurate, followed by fatal accidents. Combined with the RE of 89.0%, the model exhibits excellent performance. In addition, the proposed model outperforms other widely used models based on the overall comparisons of ACC, AUC, F1 and PR-RE curve. Finally, prediction similarity can be used as an effective approach for robustness improvement, with the launched adversarial attacks being detected at a high success rate.

Funder

National Natural Science Foundation of China

Project for Science and Technology Plan of Guangxi, China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3