Affiliation:
1. Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, School of Mechanical Engineering of Guangxi University, and Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Nanning, China
Abstract
Passenger flow detection plays an important role in guaranteeing passenger safety. It contributes to the efficiency of passenger flow control at stations. However, passenger flow detection in subway stations has the problems of target size inconsistency and poor detection effects of small targets. To solve this problem, an improved You Only Look Once algorithm (Improved-YOLO) is proposed based on the YOLOv4 for passenger flow detection in subway stations. The repeatable bidirectional feature fusion (BiFF) module was designed to combine with the adaptively spatial feature fusion (ASFF) module to replace the feature fusion network of the YOLOv4. To verify the effectiveness of the Improved-YOLO, the passenger flow dataset of Nanning Metro Line 1 was used for the experiment. Augmentation and transfer learning were then used to improve the performance of the model. Compared with the YOLOv4, the results showed that the mean average accuracy (mAP) of the Improved-YOLO increased from 89.63% to 92.96%, and the detection time of a single frame image reduced from 61 ms to 52 ms. Compared with other classical models, the Improved-YOLO showed satisfactory performance in passenger flow detection in subway stations. These experimental results can provide reference and theoretical support for real-time passenger flow detection and passenger behavior recognition in subways.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献