Passenger Flow Detection in Subway Stations Based on Improved You Only Look Once Algorithm

Author:

Li Xianwang1,Zhang Yuxiang1,He Deqiang1,Teng Xiaoliang1,Liu Bin1,Chen Yanjun1

Affiliation:

1. Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, School of Mechanical Engineering of Guangxi University, and Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Nanning, China

Abstract

Passenger flow detection plays an important role in guaranteeing passenger safety. It contributes to the efficiency of passenger flow control at stations. However, passenger flow detection in subway stations has the problems of target size inconsistency and poor detection effects of small targets. To solve this problem, an improved You Only Look Once algorithm (Improved-YOLO) is proposed based on the YOLOv4 for passenger flow detection in subway stations. The repeatable bidirectional feature fusion (BiFF) module was designed to combine with the adaptively spatial feature fusion (ASFF) module to replace the feature fusion network of the YOLOv4. To verify the effectiveness of the Improved-YOLO, the passenger flow dataset of Nanning Metro Line 1 was used for the experiment. Augmentation and transfer learning were then used to improve the performance of the model. Compared with the YOLOv4, the results showed that the mean average accuracy (mAP) of the Improved-YOLO increased from 89.63% to 92.96%, and the detection time of a single frame image reduced from 61 ms to 52 ms. Compared with other classical models, the Improved-YOLO showed satisfactory performance in passenger flow detection in subway stations. These experimental results can provide reference and theoretical support for real-time passenger flow detection and passenger behavior recognition in subways.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identification Methods for Structural Problems of Bridges Based on Deep Convolutional Neural Network;Sensors and Materials;2024-05-31

2. Advanced Deep Learning Integration for IoT Ecosystem for Content Classification;2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO);2024-03-14

3. Non-stridden Convolution and Bidirectional Cross-Scale Features Fusion Network for Steel Surface Defect Detection;Lecture Notes in Computer Science;2024

4. Metal surface defect detection based on improved YOLOv5;Scientific Reports;2023-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3