Affiliation:
1. College of Science, Purdue University, USA
Abstract
The pedestrian detection model has a high requirement on the quality of the dataset. Concerning this problem, this paper uses data cleaning technology to improve the quality of the dataset, so as to improve the performance of the pedestrian detection model. The dataset used in this paper is obtained from subway stations in Beijing and Nanjing. The data images’ quality is subject to motion blur, uneven illumination, and other noisy factors. Therefore, data cleaning is very important for this paper. The data cleaning process in this paper is divided into two parts: detection and correction. First, the whole dataset goes through blur detection, and the severely blurred images are filtered as the difficult samples. Then, the image is sent to DeblurGAN for deblur processing. 2D gamma function adaptive illumination correction algorithm is used to correct the subway pedestrian image. Then, the processed data is sent to the pedestrian detection model. Under different data cleaning datasets, through the analysis of the detection results, it is proved that the data cleaning process significantly improves the detection model’s performance.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Reference23 articles.
1. Extending dependencies with conditions for data cleaning;F. Wenfei
2. Analysis of dimensionality reduction techniques on big data;G. T. Reddy;IEEE Access,2020
3. A normalized Levenshtein distance metric;Y. Li;IEEE Transactions on Pattern Analysis and Machine Intelligence,2007
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献