Operating Performance of Diverging Diamond Interchanges

Author:

Hunter Michael1,Guin Angshuman1,Anderson James2,Park Sung Jun3

Affiliation:

1. School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA

2. AECOM, Atlanta, GA

3. Jacobs Engineering, Peachtree Corners, GA

Abstract

As the result of changing traffic patterns, many conventional intersections and interchanges can no longer accommodate growing traffic volumes and heavy turning movements. In response, there are various innovative intersection and interchange designs proposed and implemented to better accommodate these changes, and the diverging diamond interchange (DDI) is one of these alternatives. While there is a significant amount of research on the relative performance of DDIs and conventional diamond interchanges (CDIs), a clear set of guidance on demand conditions under which a DDI is likely an operationally more efficient solution is not readily available. This effort conducts a sensitivity analysis of CDI and DDI operational performance under various interchange lane configurations, including the selected study area of the Jimmy Carter Boulevard and I-85 interchange in Norcross, Georgia, under varying traffic demands and turn-movement ratios. The sensitivity analysis explores the detailed conditions in which one interchange configuration provides superior performance over the other. The sensitivity analysis is structured into a two-step process with a critical lane volume (CLV) analysis as the first step, followed by a VISSIM microscopic simulation study as the second step. Overall, the study found that a CDI is likely to be the preferred option at locations with traffic volumes well below capacity and cross-street left-turn traffic proportions below 30% of the total cross-street demand, and a DDI is likely to be preferred at locations with traffic volumes near capacity and cross-street left-turn proportions exceeding 50% of the total cross-street demand.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3