Affiliation:
1. Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI
2. Minnesota Department of Transportation (MnDOT), Office of Materials and Road Research (OMRR), Maplewood, MN
Abstract
The structural capacity of pavement foundation is altered by moisture conditions. Reliable moisture monitoring of geomaterials throughout pavement service life is critical for asset management by transportation agencies. Improved moisture sensing enables transportation officials and practitioners to better understand performance of complex recycled materials under frequent extreme rain events. Although moisture sensing for geomaterials has improved significantly, there are still challenges when using sensors in recycled materials that may contain unhydrated cement, aged asphalt, or both. Challenges include the development of calibration functions that account for the presence of recycled materials and robust installation procedures, as technology was developed mostly for agricultural practices. In this study, a series of experiments were conducted to suggest improvements for installation techniques and data interpretation of soil moisture and water potential sensors. Suggested installation guidelines minimize wash-out and erosion potential at the soil–sensor interface. Experimental results indicate a strong bilinear relation between dielectric of recycled materials and water content, with a region of relatively small change governed by dielectric permittivity of air and a region of rapid change controlled by dielectric permittivity of water. Moreover, it was found that dielectric permittivity is not significantly affected by aggregate internal structure as dielectric for a specific moisture content for different compaction degrees is relatively similar. Furthermore, soil water characteristic curves obtained using the water potential sensor and improved installation technique compare reasonably well with laboratory results obtained with traditional equipment. Reliability of both moisture and water potential sensors was improved with the suggested guidelines.
Subject
Mechanical Engineering,Civil and Structural Engineering