Using Deep Learning in Severity Analysis of At-Fault Motorcycle Rider Crashes

Author:

Das Subasish1,Dutta Anandi2,Dixon Karen1,Minjares-Kyle Lisa3,Gillette George4

Affiliation:

1. Texas A&M Transportation Institute, Texas A&M University System, College Station, TX

2. Computer Science and Engineering Department, Texas A&M University, College Station, TX

3. Texas A&M Transportation Institute, Texas A&M University System, Houston, TX

4. Department of Civil and Environmental Engineering, University of California, Berkeley, CA

Abstract

Motorcyclists are vulnerable highway users. Unlike passenger vehicle occupants, motorcycle riders do not have either protective structural surrounding or the advanced restraints that are mandatory safety features in cars and light trucks. Per vehicle mile traveled, motorcyclist fatalities occurred 27 times more frequently than passenger car occupant fatalities in traffic crashes. In addition, there were 4,976 motorcycle crash-related fatalities in the U.S. in 2014—more than twice the number of motorcycle rider fatalities that occurred in 1997. It shows that, in addition to current efforts, research needs to be conducted with additional resources and in newer directions. This paper investigated five years (2010–2014) of Louisiana at-fault motorcycle rider-involved crashes by using deep learning, which is a competent tool for mapping a high-multidimensional input into a smaller multidimensional output. The current study contributes to the existing injury severity modeling literature by developing a deep learning framework, named as DeepScooter, to predict motorcycle-involved crash severities. The final deep learning model can predict severity types with 100% accuracy with training data, and with 94% accuracy with test data, which is not attainable by using a statistical method or machine learning algorithm. The intensity of severities was found to be more likely associated with rider ejection, two-way roadways with no physical separation, curved aligned roadways, and weekends. It is anticipated that the DeepScooter framework and the findings will provide significant contributions to the area of motorcycle safety.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3