Effect of Asphalt Film Thickness on Short- and Long-Term Aging of Asphalt Paving Mixtures

Author:

Kandhal Prithvi S.1,Chakraborty Sanjoy1

Affiliation:

1. National Center for Asphalt Technology, 211 Ramsay Hall, Auburn University, Auburn, Ala. 36849-5354.

Abstract

It is generally believed that an asphalt paving mixture should have an adequate asphalt film thickness around the aggregate particles to ensure reasonable durability (resistance to aging) of the mixture. The minimum asphalt film thickness generally recommended ranges from 6 to 8 μm. However, no significant background research data are available in the literature to support these recommended minimum asphalt film thicknesses. Some states specify minimum asphalt film thickness for mix designs. This study was undertaken to quantify the relationship between various asphalt film thicknesses and the aging characteristics of the asphalt paving mix so that an optimum film thickness desirable for satisfactory mix durability could be established. Mixes prepared with asphalt binder film thickness ranging from about 4 to 13 μm were subjected to accelerated aging using Strategic Highway Research Program (SHRP) procedures to simulate both short- and long-term aging. Both the aggregate (RD) and the asphalt cement (AAM-1) used in this study were obtained from the SHRP Materials Reference Library. The aged, compacted mix was tested for tensile strength, tensile strain at failure, and resilient modulus. The aged asphalt cement was recovered and tested for penetration, viscosity, complex modulus, and phase angle. Aging indexes were obtained from these tests, and the relationship between film thickness and the aged mix/aged asphalt cement properties were determined using regression analysis. For the particular aggregate/asphalt cement combination used in this study, it was found that accelerated aging would occur if the asphalt binder film thickness was less than 9 to 10 μm in an asphalt paving mixture compacted to 8 percent air void content.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference10 articles.

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3