Development and Evaluation of Non-Traditional Pedestrian Timing Treatments for Coordinated Signalized Intersections

Author:

Gavric Slavica1ORCID,Sarazhinsky Denis2,Stevanovic Aleksandar1ORCID,Dobrota Nemanja1ORCID

Affiliation:

1. Civil and Environmental Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA

2. Department of Transport Systems and Technologies, Belarusian National Technical University, Minsk, Belarus

Abstract

Pedestrian signal timings are one of the major issues to be addressed when developing signal timing plans. So far, two different treatments of pedestrian timings for coordinated systems exist. The first treatment accommodates pedestrian timing within the cycle. Therefore, it requires longer cycle lengths that usually increase the total delay on the network. In contrast, the second treatment uses shorter cycle lengths sufficient to serve vehicular demand only. The problem with the latter is that the concurrent phase is usually not long enough to serve pedestrians. Thus, with every pedestrian call, a follow-up transition process occurs, affecting cycle lengths and coordination quality. This study develops two novel pedestrian timing treatments to overcome the problems of the traditional ones. Novel pedestrian treatments utilize a cycle length optimized to cover necessary times for vehicular phases, although pedestrian timings may require longer time intervals. However, when pedestrian calls occur, their minimum safety timings are accommodated within such a shorter cycle, and thus the transition process is not required. Our study evaluates the proposed and traditional pedestrian timing treatments using a corridor of five signalized intersections in West Valley City, Utah. Various experiments were conducted in a microsimulation environment VISSIM and collected results were statistically compared. Results show the promising property of the proposed treatments, as they outperformed the traditional pedestrian timing treatments. Therefore, further investigation of these pedestrian timing treatments is warranted. Future research should investigate possibilities of implementing similar treatments to fully actuated control systems on various networks and traffic conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3