Resampling Methods for Estimating Travel Time Uncertainty: Application of the Gap Bootstrap

Author:

Naik Bhaven1,Rilett Laurence R.2,Appiah Justice3,Walubita Lubinda F.4

Affiliation:

1. Ohio University, Athens, OH

2. University of Nebraska-Lincoln, Lincoln, NE

3. Virginia Transportation Research Council, Charlottesville, VA

4. Texas A&M Transportation Institute (TTI), The Texas A&M University System, College Station, TX

Abstract

To a large extent, methods of forecasting travel time have placed emphasis on the quality of the forecasted value—how close is the forecast point estimate of the mean travel time to its respective field value? However, understanding the reliability or uncertainty margin that exists around the forecasted point estimate is also important. Uncertainty about travel time is a fundamental factor as it leads end-users to change their routes and schedules even when the average travel time is low. Statistical resampling methods have been used previously for uncertainty modeling within the travel time prediction environment. This paper applies a recently developed nonparametric resampling method, the gap bootstrap, to the travel time uncertainty estimation problem, especially as it pertains to large (probe) data sets for which common resampling methods may not be practical because of the possible computational burden and complex patterns of inhomogeneity. The gap bootstrap partitions the original data into smaller groups of approximately uniform data sets and recombines individual group uncertainty estimates into a single estimate of uncertainty. Results of the gap bootstrap uncertainty estimates are compared with those of two popular resampling methods—the traditional bootstrap and the block bootstrap. The results suggest that, for the datasets used in this research, the gap bootstrap adequately captures the dependent structure when compared with the traditional and block bootstrap methods and may thus yield more credible estimates of uncertainty than either the block bootstrap method or the traditional bootstrap method.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3