Analysis of Fatal Truck-Involved Work Zone Crashes in Florida: Application of Tree-Based Models

Author:

Gupta Rajesh1ORCID,Asgari Hamidreza2,Azimi Ghazaleh2ORCID,Rahimi Alireza2,Jin Xia2ORCID

Affiliation:

1. Department of Statistics, University of Lucknow, Lucknow, Uttar Pradesh, India

2. Department of Civil and Environmental Engineering, Florida International University, Miami, FL

Abstract

This paper presents the results of an analysis focusing on large truck-involved work zone fatal crashes using seven-year crash data in the State of Florida. Decision tree/random forest models were applied to specifically detect critical crash patterns that result in a fatality outcome. Because of the imbalanced nature of crash severity data (very low frequency of fatal crashes compared with property damage only or injury), data were treated using random and systematic over-sampling techniques. Marginal effects were addressed using Shapley values to increase model explainability. From a methodological perspective, results showed that the combination of over-sampling techniques with ensemble random forests could significantly improve model performance in predicting fatal crashes (compared with conventional logistic regression models). Primary contributors included pedestrian involvement, lighting conditions, safety equipment, driver condition, driver age, and work zone locations. For pedestrian crashes, factors such as dark-not lighted conditions, distracted truck driver, and driver’s age (young drivers outside city limits, senior drivers inside city limits) were highly likely to be fatal. For non-pedestrian crashes, the combination of front airbag deployment with any restraint system other than shoulder and belt was quite likely to be fatal. Also, abnormal driver conditions increased the risk of a fatal outcome. Additionally, the presence of female drivers (as the second driver in multiple vehicle crashes) highly decreased crash severity, probably because females typically drive more carefully than males. Interestingly, truck driver actions and maneuvers as well as roadway design and other physical environment features (i.e., number of lanes, median type, roadway grade, and alignment) did not show significant contribution to the model.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3