Multidimensional Analysis of Willingness to Share Rides in a Future of Autonomous Vehicles

Author:

Magassy Tassio B.1ORCID,Batur Irfan1ORCID,Mondal Aupal2ORCID,Asmussen Katherine E.2ORCID,Bhat Chandra R.23ORCID,Pendyala Ram M.1ORCID

Affiliation:

1. School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ

2. Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX

3. The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Abstract

A sustainable transportation future is one in which people eschew personal car ownership in favor of using autonomous vehicle (AV)-based ridehailing services in a shared mode. However, the traveling public has historically shown a disinclination toward sharing rides and carpooling with strangers. In a future of AV-based ridehailing services, it will be necessary for people to embrace both AVs as well as true ridesharing to fully realize the benefits of automated and shared mobility technologies. This study investigated the factors influencing willingness to use AV-based ridehailing services in the future in a shared mode (i.e., with strangers). This was done through the estimation of a behavioral model system on a comprehensive survey data set that included rich information about attitudes, perceptions, and preferences pertaining to the adoption of AVs and shared mobility modes. The model results showed that current ridehailing experiences strongly influenced the likelihood of being willing to ride AV-based services in a shared mode. Campaigns that provide opportunities for individuals to experience such services firsthand would potentially go a long way to enabling a shared mobility future at scale. In addition, several attitudinal variables were found to strongly influence the adoption of future mobility services; these findings provide insights on the likely early adopters of shared autonomous mobility services and the types of educational awareness campaigns that may effect change in the prospects of such services.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3