Affiliation:
1. Georgia Institute of Technology, Atlanta, GA
Abstract
With the availability of pavement distress information with high granularity, there is a great opportunity to develop and apply new pavement performance indicators, including crack length, width, intersection point, and polygon, derived from crack fundamental elements (CFEs), to study pavement behavior and determine the optimal timing of treatments. Using CFEs and 3D high-resolution pavement surface data, we can study real-world crack deterioration behavior and correlate these new performance indicators to determine optimal maintenance and rehabilitation (M&R) method and timing (e.g., crack filling/sealing) to take full advantage of these 3D pavement surface data. This paper presents a proposed methodology to explore this opportunity. The proposed methodology consists of the following steps: (1) multiple-timestamp 3D pavement data registration, (2) new pavement performance indicators extraction from CFEs, (3) spatial–temporal analysis of new pavement performance indicators, and (4) optimal treatment and timing determination using the proposed spatial–temporal analysis of new pavement performance indicators (e.g., optimal crack filling/sealing timing and location). A case study using 6 years of 3D pavement surface data collected using 3D laser technology on SR-26 in Savannah, Georgia, was conducted to evaluate the feasibility of using the new pavement performance indicators generated by the proposed methodology. The outcomes demonstrate the proposed method is very promising for quantifying and planning M&R treatments (e.g., crack filling/sealing), which has previously been very difficult to achieve. Results also show that multiple-timestamp registration is a very crucial step in ensuring the consistent measurement of regions of interest for different years.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献