New Pavement Performance Indicators using Crack Fundamental Elements and 3D Pavement Surface Data with Multiple-Timestamp Registration for Crack Deterioration Analysis and Optimal Treatment Determination

Author:

Tsai Yichang (James)1,Yang Zhongyu1

Affiliation:

1. Georgia Institute of Technology, Atlanta, GA

Abstract

With the availability of pavement distress information with high granularity, there is a great opportunity to develop and apply new pavement performance indicators, including crack length, width, intersection point, and polygon, derived from crack fundamental elements (CFEs), to study pavement behavior and determine the optimal timing of treatments. Using CFEs and 3D high-resolution pavement surface data, we can study real-world crack deterioration behavior and correlate these new performance indicators to determine optimal maintenance and rehabilitation (M&R) method and timing (e.g., crack filling/sealing) to take full advantage of these 3D pavement surface data. This paper presents a proposed methodology to explore this opportunity. The proposed methodology consists of the following steps: (1) multiple-timestamp 3D pavement data registration, (2) new pavement performance indicators extraction from CFEs, (3) spatial–temporal analysis of new pavement performance indicators, and (4) optimal treatment and timing determination using the proposed spatial–temporal analysis of new pavement performance indicators (e.g., optimal crack filling/sealing timing and location). A case study using 6 years of 3D pavement surface data collected using 3D laser technology on SR-26 in Savannah, Georgia, was conducted to evaluate the feasibility of using the new pavement performance indicators generated by the proposed methodology. The outcomes demonstrate the proposed method is very promising for quantifying and planning M&R treatments (e.g., crack filling/sealing), which has previously been very difficult to achieve. Results also show that multiple-timestamp registration is a very crucial step in ensuring the consistent measurement of regions of interest for different years.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3