Safety Impact of Connected Vehicles on Driver Behavior in Rural Work Zones under Foggy Weather Conditions

Author:

Adomah Eric1ORCID,Khoda Bakhshi Arash1ORCID,Ahmed Mohamed M.1ORCID

Affiliation:

1. Department of Civil & Architectural Engineering, University of Wyoming, Laramie, WY

Abstract

Work zone safety is one of the paramount goals of the safety community. Safety in WZs is a particular concern under foggy conditions as they represent an exogenous factor contributing to high variability in driver behavior. In line with the Connected Vehicle (CV) Pilot Deployment Program on Interstate-80 (I-80) in Wyoming, this study investigates the safety benefits of CV Work Zone Warning (WZW) applications on driver behavior during foggy weather conditions. A work zone (WZ) was simulated using VISSIM in four sequential areas, including the advance warning, transition, activity, and termination area. The effect of drivers’ increased situational awareness under the effect of WZW was calibrated in VISSIM based on the results of a high-fidelity driving simulator experiment. Various Surrogate Measures of Safety (SMoS), including Time-To-Collision (TTC), Time Exposed Time-to-collision (TET), Time-Integrated Time-to-collision (TIT), and Modified Deceleration Rate to Avoid Crash (MDRAC), were employed to quantify the safety performance of CVs under varying CV Market Penetration Rates (MPRs). According to the results of TTC and MDRAC, it was found that an increase in CV-MPR enhances the safety performance of the WZ area. Findings showed that, under foggy weather conditions, the advance warning area had the highest TIT and TET values. Furthermore, it was revealed that an increase in MPR of up to 60% on I-80 would reduce mean speeds and the standard deviation of speed at each of the WZ areas, leading to more speed harmonization and minimizing the crash risk in WZs.

Funder

Federal Highway Administration

Wyoming Department of Transportation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3