Exploring the Spatial Dependence and Selection Bias of Double Parking Citations Data

Author:

Gao Jingqin12,Xie Kun3,Ozbay Kaan124

Affiliation:

1. C2SMART Tier 1 University Transportation Center, Tandon School of Engineering, New York University, Brooklyn, NY

2. UrbanMITS Lab, Department of Civil and Urban Engineering, Tandon School of Engineering, New York University, Brooklyn, NY

3. Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch, New Zealand

4. Center for Urban Science + Progress, Tandon School of Engineering, New York University, Brooklyn, NY

Abstract

Parking violation citations, often used to identify factors contributing to parking violation behavior, offer one of the most valuable datasets for traffic operation research. However, little has been done to examine their spatial dependence caused by location-specific differences in features such as traffic, land use, etc., and potential selection biases resulting from different effects of traffic enforcement. This study leveraged extensive data on double parking citations in Manhattan, New York City, in 2015, along with other relevant datasets including land use, transportation, and sociodemographic features. Moran’s I statistics confirmed that double parking tickets were spatially correlated so that spatial lag and spatial error models were proposed to account for the spatial dependence of parking tickets to avoid biased estimates. To investigate whether selection bias exists in issuing tickets, we estimated the effects of parking ticket density and police precinct distance, when controlling for variables such as commercial area, truck activity, taxi demand, population, hotels, and restaurants. Parking ticket density and police precinct distance were used as indicators of the enforcement levels and coverage and were found to be statistically significant. This indicated the existence of selection bias due to heterogeneity in enforcement levels or coverage across different regions. Moreover, patrol patterns of traffic enforcement officers revealed that the majority had less than three daily patterns. These findings can assist with proper usage of the citation data by recommending that researchers and agencies consider spatial dependence as well as selection bias, and provide insights for parking violation management strategies.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3