Estimation of the Smallest Acceptable Sample Size in Bilateral Approaches to Coefficient Estimation and Accuracy Prediction

Author:

Cai Bowen1ORCID,Wang Xuesong2ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Imperial College London, London, UK

2. School of Transportation Engineering, Tongji University, Shanghai, P.R. China

Abstract

This study is about smallest acceptable sample size determination in experimental design studies involving a driving simulator. The smallest acceptable sample size should be specified so researchers can make accurate inferences about their studied populations. However, the number of samples typically collected is largely subject to the expense of data collection. Working out the methodology of estimating the required number of subjects based on an initially small number is a better way for researchers to determine the smallest acceptable sample size in the experiment. Predictor estimate precision and prediction accuracy are major factors for conducting experiments. Accordingly, this study estimates the smallest acceptable sample size, with emphasis on coefficient estimation and prediction accuracy for selected significant variables. The smallest acceptable sample size is chosen to be the maximum value returned by both coefficient estimation calculation and accuracy prediction calculation approaches. This methodology is flexible and scalable, and can be tailored to other experimental situations. To validate the appropriateness of this procedure, a more than sufficient sample of 50 drivers was recruited. The smallest acceptable sample size was determined backwardly, based on the variable coefficient convergence trends of the mean squared error (MSE) curves of the significant variables. Both the clear converging trends of the MSE curves and the proposed method indicated that 30 was an acceptable sample size.

Funder

Chinese National Science Foundation

the Science and Technology Commission of Shanghai Municipality

111 Project

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3