Eco-Driving Algorithm with a Moving Bottleneck on a Single-Lane Road

Author:

Sun Pengyuan1,Yang Dingtong1,Jin Wen-Long1

Affiliation:

1. Department of Civil and Environmental Engineering, Institute of Transportation Studies, 4060 Anteater Instruction and Research Building (AIRB), University of California, Irvine, CA

Abstract

Eco-driving strategies have been applied to smooth traffic flow and reduce greenhouse gas emissions along with air pollution. In this paper, we propose an eco-driving strategy to reduce traffic oscillation and smooth trajectories for connected vehicles following a moving bottleneck on a single-lane road. The eco-driving strategy, which leverages vehicle-to-vehicle (V2V) communications, designs advisory speed limits for each following vehicle through a control algorithm. The algorithm is based on the prediction of the following vehicle trajectories dictated by a moving bottleneck. The following vehicle trajectories are obtained by analytically solving the moving bottleneck problem in which the moving bottleneck speeds vary over time. In addition, the bounded acceleration rate is imposed in car-following behavior. The benefits of this strategy are demonstrated by applying it to four scenarios with different bottleneck movements. By simulating the scenarios with Newell’s car-following model with bounded acceleration and VT-Micro emission model, we find that both speed fluctuations and emissions are reduced with the algorithm in the scenarios in which the moving bottleneck has a constant speed, accelerates, decelerates and stops-and-goes. The results indicate that the proposed eco-driving algorithm can smooth traffic flow behind a moving bottleneck.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3