Introducing a Re-Sampling Methodology for the Estimation of Empirical Macroscopic Fundamental Diagrams

Author:

Ambühl Lukas1,Loder Allister1,Bliemer Michiel C. J.2,Menendez Monica134,Axhausen Kay W.1

Affiliation:

1. IVT, ETH Zürich, Zürich, Switzerland

2. Institute of Transport and Logistics Studies, University of Sydney, NSW, Australia

3. Division of Engineering, New York University Abu Dhabi, United Arab Emirates

4. Tandon School of Engineering, New York University, USA

Abstract

The uncertainty in the estimation of the macroscopic fundamental diagram (MFD) under real-world traffic conditions and urban dynamics might result in an inaccurate estimation of the MFD parameters—especially if congestion is rarely observed network-wide. For example, as data normally come from punctual observations out of the whole network, it is unclear how representative these observations might be (i.e., how much is the observed capacity affected by the network’s inhomogeneity). Similarly, if the observed data do not exhibit a distinct congested branch, it is hard to determine the network capacity and critical density. This, in turn, also leads to uncertainties and errors in the parametrization of the MFD for applications, for example traffic control. This paper introduces a novel methodology to estimate (i) the level of inhomogeneity in the network, and (ii) the critical density of the MFD, even when no congested branch is observed. The methodology is based on the idea of re-sampling the empirical data set. Using an extensive data set from Lucerne, Switzerland, and London, UK, insights are provided on the performance and the application of the proposed methodology. The proposed methodology is used to illustrate how the level of inhomogeneity is lower in Lucerne than in the three areas of the network of London that are investigated. The proposed measure of the level of inhomogeneity gives city planners the possibility to analyze and investigate how efficiently their road network is utilized. In addition, the analysis shows that, for the network of Lucerne, the proposed methodology allows accurate estimation of the critical density up to 16 times more often than would be possible otherwise. This simple and robust estimation of the critical density is crucial for the application of many traffic control algorithms.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3