Comparing Different Deep Learning Architectures as Vision-Based Multi-Label Classifiers for Identification of Multiple Distresses on Asphalt Pavement

Author:

Espindola Aline Calheiros1ORCID,Rahman Mujib2ORCID,Mathavan Senthan3,Júnior Ernesto Ferreira Nobre4

Affiliation:

1. Technology Center, Federal University of Alagoas, Maceió, Alagoas, Brazil

2. Department of Civil Engineering, Aston University, Birmingham, UK

3. Nobleo Technology, Eindhoven, The Netherlands

4. Department of Transport Engineering, Federal University of Ceara, Fortaleza, Ceará, Brazil

Abstract

Distress measurement is essential in pavement management. Image-based distress identification is increasingly becoming an integral part of traffic speed network-level road condition surveys. This allows an aggregated summary of road conditions over the whole network, so it does not require an exact distress location within the lane. In this context, multi-label classification (MLC), based on convolutional neural networks (CNN), is proposed as a potential solution for distress identification from a network-level right-of-way (ROW) video survey. MLC has the advantage of low computing resource consumption, as it is implemented from lightweight classification networks. In this work, the developed MLC models used three different CNN architectures (VGG16, ResNet-34, and ResNet-50) to detect potholes, cracks, patches, and bleeding. The best model obtained 97% average accuracy with an F1-score of 93% in distress identification despite the variability in imaging hardware. This makes it possible to generalize the classification algorithm, allowing versatile applications and incorporating it into network-level pavement management systems. This model has good potential for fast and accurate distress identification from a video survey, avoiding the need for various types of expensive sensors like laser scanners.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3