Modified Mixed Generalized Ordered Response Model to Handle Misclassification in Injury Severity Data

Author:

Balan Lacramioara1,Paleti Rajesh2

Affiliation:

1. Civil & Environmental Engineering Department, Old Dominion University, Norfolk, VA

2. Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA

Abstract

Traditional crash databases that record police-reported injury severity data are prone to misclassification errors. Ignoring these errors in discrete ordered response models used for analyzing injury severity can lead to biased and inconsistent parameter estimates. In this study, a mixed generalized ordered response (MGOR) model that quantifies misclassification rates in the injury severity variable and adjusts the bias in parameter estimates associated with misclassification was developed. The proposed model does this by considering the observed injury severity outcome as a realization from a discrete random variable that depends on true latent injury severity that is unobservable to the analyst. The model was used to analyze misclassification rates in police-reported injury severity in the 2014 General Estimates System (GES) data. The model found that only 68.23% and 62.75% of possible and non-incapacitating injuries were correctly recorded in the GES data. Moreover, comparative analysis with the MGOR model that ignores misclassification not only has lower data fit but also considerable bias in both the parameter and elasticity estimates. The model developed in this study can be used to analyze misclassification errors in ordinal response variables in other empirical contexts.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3