Design of a Dual-Modal Signal Progression Model for Urban Arterials Accommodating Heavy Transit and Passenger Car Flows

Author:

Cheng Yao1,Kim Hyeonmi1,Chang Gang-Len1

Affiliation:

1. Department of Civil & Environmental Engineering, University of Maryland, College Park, MD

Abstract

Despite extensive studies aiming at contending with congestion on urban arterials, an effective model to produce optimal signal progression for an arterial experiencing heavy bus and passenger car flows remains unavailable. In response to such needs, this study presents a bandwidth maximization model that can offer concurrent progression to both modes or to a selected mode(s) in a selected direction(s), based on traffic volume, bus ratio, and geometric conditions. To capture the operational features of both modes, the proposed model has effectively taken into account all critical issues that may result in mutual impedance between them, which include the potential blockage by passenger car queues of roadside bus stops, the excessive start-up delays caused by transit vehicles queueing at the intersection stop line, and the reduced travel lanes for progressing flows caused by buses dwelling at roadside stations with limited storage capacity. In addition, by weighting the bandwidths with the passenger volumes by mode and by direction, the proposed model is capable of offering progression only to the mode(s) and the direction(s) for which it is justified from the perspective of maximizing the benefits to all arterial users. The numerical analysis results have confirmed the effectiveness of the proposed model in producing concurrent progression bands for both modes under various realistic constraints and volume levels. Further evaluation with extensive simulation experiments has also demonstrated that the benefits offered by the proposed model will not be at the cost of other measures of effectiveness.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive Signal Control for Multimodal Traffic: Concurrently Offering Multi-Path Progression and Transit-Friendly Signal in Real-Time;IEEE Transactions on Intelligent Transportation Systems;2024-09

2. A Partition-Enabled Multi-Path Signal Optimization under Arterial Progression for Transit Priority;Transportation Research Record: Journal of the Transportation Research Board;2024-06-06

3. A synchronization-constraints-based dual bands method of traffic signal optimization;Transportmetrica A: Transport Science;2024-04-06

4. A review of research on public transport priority based on CiteSpace;Journal of Traffic and Transportation Engineering (English Edition);2023-12

5. Incorporating bus delay minimization in design of signal progression for arterials accommodating heavy mixed-traffic flows;Journal of Intelligent Transportation Systems;2021-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3