Navigating Electric Vehicles Along a Signalized Corridor via Reinforcement Learning: Toward Adaptive Eco-Driving Control

Author:

Zhang Jian1234,Jiang Xia234ORCID,Cui Suping1,Yang Can1ORCID,Ran Bin45

Affiliation:

1. School of Engineering, Tibet University, Lhasa, Tibet, China

2. School of Transportation, Southeast University, Nanjing, Jiangsu, China

3. Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing, Jiangsu, China

4. Research Center for Internet of Mobility, Southeast University, Nanjing, Jiangsu, China

5. Department of Civil and Environmental Engineering, University of Wisconsin–Madison, Madison, WI

Abstract

One problem associated with the operation of electric vehicles (EVs) is the limited battery, which cannot guarantee their endurance. The increasing electricity consumption will also impose a burden on economy and ecology of the vehicles. To achieve energy saving, this paper proposes an adaptive eco-driving method in the environment of signalized corridors. The framework with adaptive and real-time control is implemented by the reinforcement learning technique. First, the operation of EVs in the proximity of intersections is defined as a Markov Decision Process (MDP) to apply the twin delayed deep deterministic policy gradient (TD3) algorithm, to deal with the decision process with continuous action space. Therefore, the speed of the vehicle can be adjusted continuously. Second, safety, traffic mobility, energy consumption, and comfort are all considered by designing a comprehensive reward function for the MDP. Third, the simulation study takes Aoti Street in Nanjing City with several consecutive signalized intersections as the research road network, and the state representation in MDP considers the information from consecutive downstream traffic signals. After the parameter tuning procedure, simulations are carried out for three typical eco-driving scenarios, including free flow, car following, and congestion flow. By comparing with default car-following behavior in the simulation platform SUMO and several state-of-the-art deep reinforcement learning algorithms, the proposed strategy shows a balanced and stable performance.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3