Deep Reinforcement Learning Agent with Varying Actions Strategy for Solving the Eco-Approach and Departure Problem at Signalized Intersections

Author:

Mousa Saleh R.1,Ishak Sherif2,Mousa Ragab M.34,Codjoe Julius5,Elhenawy Mohammed6

Affiliation:

1. Booz Allen Hamilton, Washington, DC

2. Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, VA

3. Faculty of Engineering, Cairo University, Cairo, Egypt

4. Ministry of Transport and Communications, Muscat, Sultanate of Oman

5. Louisiana Department of Transportation and Development, LTRC, Baton Rouge, LA

6. Centre for Accident Research and Road Safety, Queensland University of Technology, Kelvin Grove, Australia

Abstract

Eco-approach and departure is a complex control problem wherein a driver’s actions are guided over a period of time or distance so as to optimize fuel consumption. Reinforcement learning (RL) is a machine learning paradigm that mimics human learning behavior, in which an agent attempts to solve a given control problem by interacting with the environment and developing an optimal policy. Unlike the methods implemented in previous studies for solving the eco-driving problem, RL does not require prior knowledge of the environment to be learned and processed. This paper develops a deep reinforcement learning (DRL) agent for solving the eco-approach and departure problem in the vicinity of signalized intersections for minimization of fuel consumption. The DRL algorithm utilizes a deep neural network for the RL. Novel strategies such as varying actions, prioritized experience replay, target network, and double learning were implemented to overcome the expected instabilities during the training process. The results revealed the significance of the DRL algorithm in reducing fuel consumption. Interestingly, the DRL algorithm was able to successfully learn the environment and guide vehicles through the intersection without red light running violation. On average, the DRL provided fuel savings of about 13.02% with no red light running violations.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3