Profiling Transport Network Company Activity using Big Data

Author:

Cooper Drew1,Castiglione Joe1,Mislove Alan2,Wilson Christo2

Affiliation:

1. San Francisco County Transportation Authority, San Francisco, CA

2. Northeastern University, College of Computer and Information Science, Boston, MA

Abstract

Transportation network companies (TNCs) provide vehicle-for-hire services. They are distinguished from taxis primarily by the presumption that vehicles are privately owned by drivers. Unlike taxis, which must hold one of approximately 1,800 medallions licensed by the San Francisco Municipal Transportation Agency (SFMTA) to operate in San Francisco, there is no regulatory limit on the supply of TNCs. TNCs have an increasingly visible presence in San Francisco. However, there has been little or no objective data available on TNCs to allow planners to understand the number of trips they provide, the amount of vehicle miles traveled they generate, or their effects on congestion, transit ridership, transit operations, or safety. Without this type of data it is difficult to make informed planning and policy decisions. Discussions with Uber, Lyft, and the California Public Utilities Commission, which collects trip-level data from TNCs in California, requesting information on TNC trips have not resulted in any data being shared. Under increasing pressure from policymakers for objective data to inform policy decisions, the San Francisco County Transportation Authority (SFCTA) partnered with researchers from Northeastern University who developed a methodology for collecting data through Uber’s and Lyft’s application programming interfaces (APIs) with high spatial and temporal resolution. This paper provides a brief literature review on transport network company (TNC) data, and goes one to describe the methodology used to collect data, summarizes the process for converting the raw data into estimated TNC trips, and presents an analysis of the results of the TNC trip estimates. This study determined that TNCs serve a substantial number of trips in San Francisco, over 170,000 on a typical weekday, that these trips follow traditional time of day distributions, and that they tend to take place in the busiest parts of the City.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Equitable Access to Transit—Case Study of Transportation Network Company (TNC) Users in Chicago;International Conference on Transportation and Development 2023;2023-06-13

2. The Impact of Ride-Hailing Services on Congestion: Evidence from Indian Cities;Manufacturing & Service Operations Management;2023-05

3. Operational Impacts of On-Demand Ride-Pooling Service Options in Birmingham, AL;Future Transportation;2023-04-24

4. Ridesourcing mode choice: A latent class choice model for UberX in Chile;Transportation Research Interdisciplinary Perspectives;2022-12

5. Realistic urban traffic simulation with ride-hailing services;Proceedings of the 30th International Conference on Advances in Geographic Information Systems;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3