Identifying Subway Passenger Flow under Large-Scale Events Using Symbolic Aggregate Approximation Algorithm

Author:

Huang Hainan1,Zhang Rongjie2,Xie Chengguang1ORCID,Li Xiaofeng3ORCID

Affiliation:

1. College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou, China

2. Xiamen University Tan Kah Kee College, Zhangzhou, China

3. Department of Civil and Architectural Engineering and Mechanics, The University of Arizona, Tucson, AZ

Abstract

Various social events, such as holidays, important sporting events, and major celebrations, may result in sudden large-scale passenger flows in certain sections and stations of urban rail transit systems. The sudden inbound passenger flows caused by these events can easily lead to continuous congestion of the subway network, which has a profound impact on the safety, reliability, and stability of a subway system. Because of the large magnitude of swipe data and the high dimensionality of time series, it is difficult to identify the emergence of such large passenger flows. Additionally, the recognition accuracy of the existing identification methods cannot meet the operational monitoring requirements. To address the above-mentioned issues, this paper proposes an optimized symbolic aggregate approximation (SAX) algorithm to identify historical sudden passenger flows caused by large-scale events around subways. Specifically, pre-set cluster types and dynamic time warping (DTW) are proposed to enhance the matching rate. Compared with the K-means method, the proposed method exhibits an average increase of 30% in mining accuracy, and the calculation time is shortened to one-sixteenth of the original value.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3