A study on muti-strategy predator algorithm for passenger traffic prediction with big data

Author:

Fu Yujie1,Gao Ming2,Zhu Xiaohui3,Fu Jihong4

Affiliation:

1. Department of Geography , University College London , London , , UK .

2. School of Sport, Exercise and Health Sciences , Loughborough University , Leicestershire , , UK .

3. Tourism and Culture Industry Research Institute , Yunnan University of Finance and Economics , Kunming , Yunnan , , China .

4. Yunnan Tourism College , Kunming , Yunnan , , China .

Abstract

Abstract In this paper, we study the big data multi-strategy predator algorithm for tourist flow prediction and explore the application of the algorithm in optimizing the tourist flow prediction model to improve the prediction accuracy and efficiency. An adversarial learning strategy extends the search space, an adaptive weighting factor balances the global and local search ability, and a variance operation combined with differential evolution is used to avoid local optimal traps. The experiment adopts variables such as network booking volume and search index as inputs for passenger flow prediction. The predator algorithm is trained by Extreme Learning Machine (ELM) to optimize the input weights and biases to build the FMMPAELM model. The results show that on the training samples, the FMMPA-ELM model predictions are highly consistent with the actual values, with a maximum prediction index of 200.On the test samples, although there are errors, the FMMPA-ELM model exhibits better prediction ability than the traditional ELM model. It is concluded that the FMMPAELM model can effectively improve the accuracy of passenger flow prediction and provide powerful decision support for the tourism industry.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3