Decision Support Tool for Planning Neighborhood-Scale Deployment of Low-Speed Shared Automated Shuttles

Author:

Zhu Lei1,Wang Jinghui1,Garikapati Venu1,Young Stanley1

Affiliation:

1. National Renewable Energy Laboratory, Golden, CO

Abstract

Increasing interest and investment in connected, automated, and electric vehicles as well as mobility-as-a-service (MaaS) concepts are paving the way for the next major transformation in transportation through automated and shared mobility. The initial excitement toward rapid deployment and adoption of automated vehicles (AVs) has subsided, and low-speed automated shuttles are emerging as a more pragmatic pathway for introducing automated mobility in geofenced districts. Such shuttles hold the promise to provide a viable alternative for serving short trips in urban districts with high travel densities. As interest in low-speed automated shuttle systems (to improve urban mobility) increases, the need for tools that can inform communities in relation to benefits or disadvantages of automated shuttle deployments is imminent. However, most of the existing transportation planning and simulation tools are not capable of handling emerging shared automated mobility options. This paper presents a microscopic simulation toolkit that can be used by cities and communities to plan for the deployment of low-speed automated shuttles systems, as well as other shared mobility options. Labeled as the Automated Mobility District modeling and simulation toolkit, the proposed decision support tool intends to help cities evaluate the mobility and sustainability impacts of deploying shared automated vehicles (SAVs) in geofenced regions. This paper describes the toolkit, as well as a sample scenario analysis for the deployment of low-speed automated shuttles in Greenville, South Carolina, U.S. Results from the scenario study demonstrate the effectiveness of the proposed simulation toolkit in planning for advanced mobility systems.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3