Systemic Design Strategies for Shaping the Future of Automated Shuttle Buses

Author:

Yan Ming1ORCID,Lu Peng1ORCID,Arquilla Venanzio1ORCID,Brevi Fausto1ORCID,Rampino Lucia1ORCID,Caruso Giandomenico2ORCID

Affiliation:

1. Department of Design, Politecnico di Milano, 20158 Milan, Italy

2. Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy

Abstract

Automated shuttle buses entail adopting new technologies and modifying users’ practices, cultural and symbolic meanings, policies, and markets. This results in a paradigmatic transition for a typical sociotechnical system: the transport system. However, the focus of the extant literature often lacks an overall vision, addressing a single technology, supply chain, or societal dimension. Although systemic design can manage multiple-level and long-term transitions, the literature does not discuss how systemic design tools can support implementation. This paper takes the four strategies proposed by Pereno and Barbero in 2020 as the theoretical framework to fill this literature gap, discussing the specific systemic design methods applicable to the design of automated shuttle bus systems. A six-week workshop to facilitate the exploration of future autonomous public transportation is taken as a case study. The systemic design approach was applied to enrich the Human–Machine Interaction (HMI) and functional architecture of automated shuttle buses.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3