Model Predictive Control for Full Autonomous Vehicle Overtaking

Author:

Lamouik Imad1,Yahyaouy Ali1,Sabri My Abdelouahed1ORCID

Affiliation:

1. Department of Computer Science, Faculty of Sciences Dhar El Mahraz, University of Sidi Mohamed Ben Abdellah, Fez, Morocco

Abstract

Despite the many advancements in traffic safety, vehicle overtaking still poses significant challenges to both human drivers and autonomous vehicles, especially, how to evaluate the safety of passing a leading vehicle efficiently and reliably on a two-lane road. However, few realistic attempts in this field have been made in the literature to provide practical solutions without prior knowledge of the state of the environment and simplifications of vehicle models. These model simplifications make many of the proposed solutions in the literature unusable in real scenarios. Considering the dangers that can arise from performing a defective overtake and the substantial risk of vehicle crashes during high-speed maneuvers, in this paper we propose a system based on model predictive control to accurately estimate the safety of starting a vehicle overtake in addition to vehicle control during the maneuver that aims to ensure a collision-free overtake using a complete and realistic model of the vehicle’s dynamics. The system relies on a stereoscopic vision approach and machine learning techniques (YOLO and DeepSORT) to gather information about the environment such as lane width, lane center, and distance from neighboring vehicles. Furthermore, we propose a set of scenarios to test the performance of the proposed system based on accurate modeling of the environment under a range of traffic conditions and road architecture. The simulation result shows the high performance of the proposed system in ending collisions during overtaking and providing optimal pathing that minimizes travel time.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3