Effect of Temperature Difference on the Thickness Design of Pervious Concrete Pavements

Author:

AlShareedah Othman1,Mostofa Haider Md1,Nassiri Somayeh1

Affiliation:

1. Department of Civil and Environmental Engineering, Washington State University, Pullman, WA

Abstract

Pervious concrete pavement (PCP) is a porous paving material that facilitates the rapid infiltration of runoff. The significance of temperature difference (ΔT) between the top and bottom of traditional concrete pavements for stresses and structural design is well known. However, with their low thermal conductivity, the question exists whether PCPs develop large ΔTs that vary during the day and between seasons. If so, the extent of the effect of such ΔTs on stresses in the slab and the thickness design of PCP needs to be investigated. In this study, temperature data collected from three PCP sections (in two different climate regions) instrumented with thermocouples were used to analyze ΔT for multi-year periods. Frequency distribution of ΔTs showed bimodal trends with peaks ranging between –6°C and 17°C occurring during the day and night of spring and summer seasons. In winter, ΔT distribution was unimodal, with peaks ranging from 0°C to 3°C. Finite element analysis was conducted to quantify the stresses in PCP sections with different flexural strength ( MR) and modulus of subgrade reaction under combinations of critical ΔTs and axle loading. The resulted stresses were used in a PCP fatigue model to estimate fatigue life and slab thickness for PCPs. Based on the expected load repetitions in a 20-year design life, a database of recommended thicknesses for PCPs with various material properties and under four traffic categories was developed. Increasing MR from 2.4 to 3.1 MPa resulted in reducing PCP design thicknesses by 20–55 mm under the same loads. Moreover, incorporating ΔT in the thickness design of PCP resulted in a higher minimum required thicknesses by up to 100 mm compared with PCP with no ΔT under the same traffic loads.

Funder

Center for Environmentally Sustainable Transportation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3