Cyclic Heat Island Impacts on Traditional versus Pervious Concrete Pavement Systems

Author:

Haselbach Liv1,Boyer Michelle2,Kevern John T.3,Schaefer Vernon R.4

Affiliation:

1. 109 Sloan Spokane Street, Department of Civil and Environmental Engineering, Washington State University, Pullman, WA 99164-2910.

2. 101 Sloan Spokane Street, Department of Civil and Environmental Engineering, Washington State University, Pullman, WA 99164-2910.

3. Department of Civil and Mechanical Engineering, University of Missouri–Kansas City, 370H Flarsheim Hall, 5100 Rockhill Road, Kansas City, MO 64110.

4. Department of Civil, Construction, and Environmental Engineering, Iowa State University, 488 Town Engineering, Ames, IA 50011.

Abstract

As the world becomes more urbanized, concerns over the urban heat island (UHI) are more pronounced. Increased urban temperatures have a negative affect on the natural and human environment by producing increased energy usage and smog formation. Pervious concrete pavement is one technology that may help mitigate increased urban temperatures. Temperature data from an instrumented site in Iowa and heat storage phenomena for various weather patterns are presented. The site contains both pervious concrete pavement with a solar reflectance index (SRI) of 14 and traditional concrete pavement with an SRI of 37. Leadership in Energy and Environmental Design (LEED) accepted a high SRI (>29) as one method to characterize a cool surface. Heat capacities of both systems were studied along with a sensitivity analysis of the inputs. The research supports the conclusion that even though pervious concrete may have a much lower SRI than traditional concrete made with similar materials, it can be considered a cool pavement option. In addition, daytime rainfalls combined with the internal high surface area result in significantly more removal of stored heat from the system, with a more rapid mitigation of UHI impacts and reduction in the potential for thermal shock from impervious surface runoff.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3