Data-Driven Evaluation Methodology for Active Traffic Management Systems Utilizing Sparse Speed Data

Author:

Robbennolt Jake1ORCID,Hourdos John2ORCID

Affiliation:

1. University of Texas, Austin, TX

2. University of Minnesota, Minneapolis, MN

Abstract

Many active traffic management systems and transportation systems management and operations strategies have been evaluated for safety based on crash reduction over time. These long-term studies are effective in showing the safety benefits of new systems, but do not often quantify other factors such as travel time, the extent of congestion, or the environmental impacts. Building on previous research into spatiotemporal interpolation of speed data, this methodology developed a mathematical representation of the speed and acceleration potential of the traffic stream given the sparse speed data from point sensors. This high-resolution estimate of traffic state could be used to construct trajectories of vehicles the could include data on vehicle speed and acceleration at each location in space and point in time. This methodology is general, and the trajectories could be used to evaluate traffic flow in several different ways. In the case study provided, trajectories were used to evaluate the ability of a queue warning algorithm to detect and warn drivers about unsafe conditions. Other potential applications include utilizing these trajectories to calculate fuel consumption, travel times, and speed variability to determine how new systems affect fundamental traffic characteristics.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3