Introducing a Cost-Effective Approach for Improving the Arterial Traffic Performance Operating Under the Semi-Actuated Coordinated Signal Control

Author:

Dabiri Sina1,Kompany Kianoush2,Abbas Montasir1

Affiliation:

1. Charles Edward Via, Jr. Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA

2. Atkins North America, Raleigh, NC

Abstract

The semi-actuated coordinated operation mode is a type of signal control where minor approaches are placed with detectors to develop actuated phasing while major movements are coordinated without using detection systems. The objective of this study is to propose a cost-effective approach for reducing delay in the semi-actuated coordinated signal operation without incurring any extra costs in terms of installing new detectors or developing adaptive controller systems. We propose a simple approach for further enhancing a pre-optimized timing plan. In this method, the green splits of non-coordinated phases are multiplied by a factor greater than one. In the meantime, the amount of green time added to the non-coordinated phases is subtracted from the coordinated phases to keep the cycle length constant. Thus, if the traffic demand on the side streets exceeds the expected traffic flow, the added time in the non-coordinated phase enables the non-coordinated phases to accommodate the additional traffic demand. A regression analysis is implemented so as to identify the optimal value of the mentioned factor, called actuated factor (ActF). The response variable is the average delay reduction (seconds/vehicle) of the simulation runs under the proposed signal timing plan compared with the simulation runs under the pre-optimized timing plan, obtained through the macroscopic signal optimization tools. External traffic movements, left-turn percentage, and ActF are the explanatory variables in the model. Results reveal that the ActF is the only significant variable with the optimal value of 1.15 that is applicable for a wide range of traffic volumes.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3