OD-NETBAND: An Approach for Origin–Destination Based Network Progression Band Optimization

Author:

Arsava Tugba1,Xie Yuanchang2,Gartner Nathan2

Affiliation:

1. Department of Civil Engineering and Technology, Wentworth Institute of Technology, Boston, MA

2. Department of Civil and Environmental Engineering, University of Massachusetts Lowell, Lowell, MA

Abstract

Traditional progression band optimization methods are focused on providing uninterrupted flow along arterial streets. For arterials with significant traffic streams joining and leaving from side streets, these approaches often generate poor traffic signal control performance. To address this deficiency, an origin–destination (OD) information based progression band optimization model, OD-BAND, was formulated to coordinate signals for arterials with major side-street traffic streams. This paper aims to extend the OD-BAND model further to address the OD based traffic signal coordination problem in multi-arterial grid networks. The extended model is able to create separate progression bands for each major OD stream in the network. In this expanded model, individual arterials are connected with loop constraints to ensure that offsets derived via different paths for a particular intersection are equal. The new OD-NETBAND model is formulated as a mixed integer linear program that maximizes the sum of each major OD stream’s progression bandwidth. It can optimize simultaneously cycle length, offsets, and phase sequences for the entire network. Performance of the new model is evaluated with AIMSUN microscopic simulation and is compared with MAXBAND-86 and Synchro results.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Algebraic Method of Arterial Progression Based on Green Center Line;Journal of Transportation Engineering, Part A: Systems;2024-01

2. Optimization Model of Regional Green Wave Coordination Control for the Coordinated Path Set;IEEE Transactions on Intelligent Transportation Systems;2023-07

3. A Heuristic Approach for Multi-Path Signal Progression Considering Traffic Flow Uncertainty;Mathematics;2023-01-10

4. Design of Network Green Bands Considering Trams;Journal of Transportation Engineering, Part A: Systems;2022-12

5. Offset Optimization for Arterial Signal Coordination Considering Spillover Prevention;2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC);2022-10-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3