Modeling the External Effects of Air Taxis in Reducing the Energy Consumption of Road Traffic

Author:

Lin Zhenhong1,Xie Fei1,Ou Shiqi (Shawn)1

Affiliation:

1. Energy and Transportation Science Division, Oak Ridge National Laboratory, Knoxville, TN

Abstract

Air taxis are currently being demonstrated. Few studies have quantified their external effects in reducing on-road vehicle fuel consumption. The hypothesis of this paper is that air taxis may divert some drivers away from congested traffic corridors, improve traffic speed and fuel economy, and reduce congestion-induced energy consumption. A model is developed that links several key components: mode choice, the relationship between travel demand and traffic speeds, the relationship between traffic speeds and fuel economies, and the heterogenous value of travel time. It is applied to the route from downtown Los Angeles to Los Angeles International Airport, where at peak hours 38,200 vehicles attempt to use the route that has an hourly capacity of 17,200 vehicles. The model estimates that, with conservative assumptions and near-term technologies, diverting 3.2% of the traffic to air taxis could produce a 15% reduction in traffic vehicle fuel use. With optimistic assumptions and mature technologies, the study estimates that diverting 20% of traffic could reduce the traffic vehicle fuel use by about 74%. The key insight is that if a small share of congested travelers switched to air taxis, motivated by private benefits of time savings, significant external benefits for other road travelers (time savings and fuel savings) and to society (reduced energy use and emissions), would ensue creating a win-win-win outcome. These estimates (which are not intended as predictions because of the stated limitations) strongly suggest the need to consider the external energy effect in future cost-benefit analyses of air taxi technologies.

Funder

u.s. department of energy

vehicle technologies office

oak ridge national laboratory

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3