Multi-objective Eco-Routing Model Development and Evaluation for Battery Electric Vehicles

Author:

Ahn Kyoungho1ORCID,Bichiou Youssef1ORCID,Farag Mohamed12ORCID,Rakha Hesham A.3ORCID

Affiliation:

1. Center for Sustainable Mobility, Virginia Tech Transportation Institute, Blacksburg, VA

2. College of Computing and Information Technology, Arab Academy for Science, Technology, and Maritime Transport, Alexandria, Egypt

3. Charles E. Via, Jr. Department of Civil and Environmental Engineering, Center for Sustainable Mobility, Virginia Tech Transportation Institute, Blacksburg, VA

Abstract

This paper develops a multi-objective eco-routing algorithm (eco- and travel time-optimum routing) for battery electric vehicles (BEVs) and internal combustion engine vehicles (ICEVs) and investigates the network-wide impacts of the proposed multi-objective Nash optimum (user equilibrium) traffic assignment on a large-scale network. Unlike ICEVs, BEVs are more energy efficient on low-speed arterial trips compared with highway trips. Different energy consumption patterns require different eco-routing strategies for ICEVs and BEVs. This study found that single-objective eco-routing could significantly reduce the energy consumption of BEVs but also significantly increase their average travel time. Consequently, the study developed a multi-objective routing model (eco- and travel time-routing) to improve both energy and travel time measures. The model introduced a link cost function that uses the specification of the value of time and the cost of fuel/energy. The simulation study found that multi-objective routing could reduce BEV energy consumption by 13.5%, 14.2%, 12.9%, and 10.7%, as well as ICEV fuel consumption by 0.1%, 4.3%, 3.4%, and 10.6% for “not congested, “slightly congested,”“moderately congested,” and “highly congested” conditions, respectively. The study also found that multi-objective user equilibrium routing reduced the average vehicle travel time by up to 10.1% compared with the standard user equilibrium traffic assignment for highly congested conditions, producing a solution closer to the system optimum traffic assignment. The results indicate that the proposed multi-objective eco-routing strategy can reduce vehicle fuel/energy consumption effectively with minimum impacts on travel times for both BEVs and ICEVs.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Eco-Friendly Route Planning Algorithms: Taxonomies, Literature Review and Future Directions;ACM Computing Surveys;2024-09-02

2. Research on Joint Distribution Path Planning of Electric Logistics Vehicles with Different Recharge Modes;Transportation Research Record: Journal of the Transportation Research Board;2024-08-06

3. A Reliability-Based Network Equilibrium Model with Electric Vehicles and Gasoline Vehicles;Promet - Traffic&Transportation;2024-03-01

4. A Model-Based Informed Eco-Routing Method for Electric Vehicles in Urban Environments;2024 Forum for Innovative Sustainable Transportation Systems (FISTS);2024-02-26

5. How Does Eco-Routing Affect Total System Emissions? City Network Predictions From User Equilibrium Models;IEEE Transactions on Intelligent Transportation Systems;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3