Evaluation of Moisture Damage under Crack-Sealed Asphalt Pavements in Louisiana

Author:

Mousa Momen R.1,Elseifi Mostafa A.1,Zhang Zhongjie2,Gaspard Kevin2

Affiliation:

1. Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA

2. Louisiana Transportation Research Center, Louisiana State University, Baton Rouge, LA

Abstract

Crack sealing prevents the ingress of water in the pavement structure, thus preventing the weakening of the pavement and delaying its deterioration. Earlier studies indicate that sealing pavements in areas with a high ground water table (GWT) may prevent moisture from escaping upwards through cracks in asphalt pavements, therefore, accelerating stripping. The objective of this study was to provide guidelines for using crack sealing to minimize moisture entrapment under cracks, thus reducing stripping on low volume roadways. To achieve this, a calibrated Finite Element (FE) model was used to model a field experiment consisting of cracked and crack-sealed asphalt pavement sections. Sensitivity analysis was then conducted to compare crack-sealed and unsealed sections under different GWT levels, air relative humidity, air temperatures, rain intensities, and asphalt hydraulic conductivities. Results indicate that crack sealing could be applied under common rain intensities in Louisiana and any GWT depth without potential for stripping because of moisture entrapment if the hydraulic conductivity of the original pavement does not exceed 2 × 10–6 m/s. Yet, crack sealing should be applied after a dry period to ensure that the existing moisture in the original pavement is minimal. A non-linear regression model was developed for use in the Southern United States to help determine whether crack sealing should be used to avoid moisture damage in a cracked pavement at a given site based on the GWT and air relative humidity without the need for FE simulations. This can be a useful tool when planning maintenance activities.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Asphalt Pavement Crack Detection Based on Improved YOLOv5s Algorithm;2024 7th International Conference on Advanced Algorithms and Control Engineering (ICAACE);2024-03-01

2. Investigating the Seepage Characteristics of an Open-Graded Friction Course Using Finite Element Modeling;Transportation Research Record: Journal of the Transportation Research Board;2023-05-04

3. Optimization of Aggregate Characteristic Parameters for Asphalt Binder—Aggregate System under Moisture Susceptibility Condition Based on Random Forest Analysis Model;Applied Sciences;2023-04-09

4. A Fuzzy-Delphi Approach for the Prioritization of Traffic Impact Mitigation Measures under Heavy Rainfall Conditions;Journal of Settlements and Spatial Planning;2022-06-01

5. Impact of the Great Flood of 2016 on the Asphaltic Concrete Road Infrastructure in Louisiana;Transportation Research Record: Journal of the Transportation Research Board;2022-03-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3