Investigating the Seepage Characteristics of an Open-Graded Friction Course Using Finite Element Modeling

Author:

Abohamer Hossam1ORCID,Elseifi Mostafa A.2ORCID,Mayeux Corey3ORCID,Cooper Samuel B.3,Cooper Samuel3ORCID

Affiliation:

1. Applied Research Associates, Austin, TX

2. Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA

3. Louisiana Transportation Research Center, Baton Rouge, LA

Abstract

An open-graded friction course (OGFC) is an asphalt mixture designed with a large air void (AV) content that provides enhanced drainage capability at the surface. The main objectives of this study were to investigate the impacts of selected factors (i.e., the OGFC thickness and coefficient of permeability, the permeability of the underlying layer, and traffic loading) on the drainage characteristics of the OGFC, develop a quantitative tool to simulate the deterioration in the functional performance of the OGFC, and propose new guidelines for the AV content of OGFC for optimum functionality. To this end, a three-dimensional finite element (FE) model was developed to evaluate the impacts of OGFC permeability, OGFC layer thickness, underlying layer permeability, rain intensity, and traffic volume on the seepage characteristics of OGFC pavements. The impacts of these factors were evaluated by calculating the time at which the OGFC surface reaches overflow condition ( TC). Statistical analysis of the results showed that all considered factors had a significant impact on OGFC seepage characteristics, except OGFC permeability. In addition, an artificial neural network (ANN) model was developed to predict TC without the need for FE modeling. Results indicated that the ANN model predicted TC accurately with R2 values of 0.99 and 0.98 in the training and validation stages, respectively. The results also indicated that the model accurately predicted TC over time for OGFC pavements with a root-mean-square error of less than 5.0%. Simulation runs were conducted using the developed FE model under different OGFC AV content conditions and rain intensities. Results revealed that an OGFC layer with an AV content of 16% would provide adequate drainage performance while minimizing OGFC durability issues.

Funder

Louisiana Transportation Research Center

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3