Real-Time Vehicle Trajectory Estimation Based on Lane Change Detection using Smartphone Sensors

Author:

Islam Zubayer1,Abdel-Aty Mohamed1

Affiliation:

1. Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL

Abstract

As technology is moving rapidly toward automation and connectivity, it is of paramount importance to predict vehicle trajectories ahead of time. This not only enhances safety but also ensures mobility in a connected and automated environment. Previous studies have shown that, given the previous trajectory, the future trajectory can be estimated. But this method suffers from considerable drawbacks in the case of intersections as it cannot predict turning movements. It also requires advanced sensors that are not readily available in most vehicles. A smartphone device can also be used in such scenarios, bringing partial automation to vehicles without these sensors. This paper presents an integrated method of estimating vehicle trajectories for both general roadway segments and intersections by using a smartphone. A lane change detection system is taken as an indicator of intersection turning movement estimation and corresponding vehicle trajectories are estimated accordingly. The system can achieve high penetration rates and can be used to replicate onboard units. Sensor readings are taken periodically which are first filtered with a low-pass filter to zero out any high-frequency noise and then fed into a machine learning model to detect lane changes. The model can successfully capture lane changes with smartphone data with high accuracy (95%). Finally, vehicle trajectory is estimated using Chebyshev’s polynomial. This type of estimation system can find applications in collision prediction at intersections between a turning vehicle and a pedestrian on a crosswalk.

Funder

florida department of transportation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3