Trip Destination Prediction Based on Hidden Markov Model for Multi-Day Global Positioning System Travel Surveys

Author:

Jin Zeqian1,Chen Yanyan1,Li Chen1,Jin Zexin2

Affiliation:

1. Beijing Engineering Research Center of Urban Transport Operation Guarantee, Beijing University of Technology, Beijing, China

2. Chengdu College of University of Electronic Science and Technology of China, Sichuan, China

Abstract

Different individuals may move to different regions over time, but every individual has several fixed travel positions or unique travel patterns. Predicting destinations of each individual facilitates traffic demand management, which has great research value. Based on the data of multi-day GPS and passengers’ travel survey, a hidden Markov model (HMM) is employed in this paper to predict trip destination for weekdays and weekends. Firstly, the habit of destination choice among consecutive days and weeks can be discovered by identifying frequently visited destinations. Then, on the basis of Viterbi algorithm, this paper takes frequently visited destinations as one of the factors of the predicting process and constructs a travel destination prediction model based on HMM. Then, the HMM is calibrated with Baum-Welch algorithm and passengers’ travel destination characteristics are effectively analyzed. Finally, the HMM was compared with several classical algorithms. The results show that the place of residence and work are the most probable activities to occur and workplace dominates the activities when duration is longer than 8 h. Moreover, the results of frequently visited destinations identification indicate that the patterns of destination choice on weekdays and weekends are different from each other. In addition, the results show that the prediction accuracy on weekdays is higher than that on weekends and HMM outperforms other prevailing algorithms. The method proposed in this paper can be applied to real-time travel navigation applications, as well as supporting health and safety fields, such as epidemic prevention and control.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3