Author:
Wu Jiacheng,Zhu Wang,Xiao Jianli
Publisher
Springer Nature Singapore
Reference12 articles.
1. Cui, H., Meng, Q., Teng, T.H., et al.: Spatiotemporal correlation modelling for machine learning-based traffic state predictions: state-of-the-art and beyond. Transp. Rev. 2023, 1–25 (2023)
2. Lujak, M., Giordani, S., Ossowski, S.: Route guidance: bridging system and user optimization in traffic assignment. Neurocomputing 151, 449–460 (2015)
3. Yin, R.R., Yuan, H.L., Wang, J., et al.: Modeling and analyzing cascading dynamics of the urban road traffic network. Physica A 566, 125600 (2020)
4. Okutani, I., Stephanedes, Y.J.: Dynamic prediction of traffic volume through Kalman filtering theory. Transp. Res. Part B Methodological. 18(1), 1–11 (1984)
5. Shekhar, S., Williams, B.M.: Adaptive seasonal time series models for forecasting short-term traffic flow. Transp. Res. Rec. 2024(1), 116–125 (2007)