Drivers’ Visual Distraction Detection Using Facial Landmarks and Head Pose

Author:

Zhang Shile1ORCID,Abdel-Aty Mohamed1ORCID

Affiliation:

1. Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL

Abstract

Drivers’ distraction has been widely studied in the field of naturalistic driving studies. However, it is difficult to use traditional variables, such as speed, acceleration, and yaw rate to detect drivers’ distraction in real time. Emerging technologies have obtained features from human faces, such as eye gaze, to detect drivers’ visual distraction. However, eye gaze is hard to detect in naturalistic driving situations, because of low-resolution cameras, drivers wearing sunglasses, and so forth. Instead, head pose is easier to detect, and has correlation with eye gaze direction. In this study, city-wide videos are collected using onboard cameras from over 289 drivers representing 423 events. Head pose (pitch, yaw, and roll rates) are derived and fed into a convolutional neural network to detect drivers’ distraction. The experiment results show that the proposed model can achieve recall value of 0.938 and area under the receiver operating characteristic curve value of 0.931, with variables from five time slices (1.25 s) used as input. The study proves that head pose can be used to detect drivers’ distraction. The study offers insights for detecting drivers’ distraction and can be used for the development of advanced driver assistance systems.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3