Evaluating Relationships between Perception-Reaction Times, Emergency Deceleration Rates, and Crash Outcomes using Naturalistic Driving Data

Author:

Wood Jonathan S.1,Zhang Shaohu2

Affiliation:

1. Civil, Construction and Environmental Engineering Department, Iowa State University, Ames, IA

2. Computer Science Department, North Carolina State University, Raleigh, NC

Abstract

Perception-reaction time (PRT) and deceleration rate are two key components in geometric design of highways and streets. Combined with a design speed, they determine the minimum required stopping sight distance (SSD). Current American Association of Highway Transportation Officials (AASHTO) SSD guidance is based on 90th percentile PRT and 10th percentile deceleration rate values from experiments completed in the mid-1990s. These experiments lacked real-world distractions, and so forth. Thus, the values from these experiments may not be applicable in real-world scenarios. This research evaluated (1) differences in PRTs and deceleration rates between crash and near-crash events and (2) developed predictive models for PRT and deceleration rate that could be used for roadway design. This was accomplished using (1) genetic matching (with Rosenbaum’s sensitivity analysis) and (2) quantile regression. These methods were applied to the Strategic Highway Research Program 2 (SHRP2) Naturalistic Driving Study (NDS) data. The analysis results indicated that there were differences in PRT and deceleration rates for crash and near-crash events. The specific estimates were that, on average, drivers involved in crash events took 0.487 s longer to react and decelerated at 0.018 g’s (0.58 ft/s2) slower than drivers in equivalent near-crashes. Prediction models were developed for use in roadway design. These models were used to develop tables comparing existing SSD design criteria with SSD criteria based on the results of the predictive models. These predicted values indicated that minimum design SSD values would increase by 10.5–129.2 ft, dependent on the design speed and SSD model used.

Funder

Mountain Plains Consortium

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3