Real-Time Barge Detection Using Traffic Cameras and Deep Learning on Inland Waterways

Author:

Agorku Geoffery1ORCID,Hernandez Sarah1ORCID,Falquez Maria1,Poddar Subhadipto1ORCID,Amankwah-Nkyi Kwadwo1

Affiliation:

1. Department of Civil Engineering, University of Arkansas, Fayetteville, Arkansas

Abstract

Inland waterways are critical for freight movement, but limited means exist for monitoring their performance and usage by freight-carrying vessels (e.g., barges). Although methods to track vessels (e.g., tug and tow boats) are publicly available through Automatic Identification System (AIS), ways to track freight tonnages and commodity flows carried on barges along these critical marine highways are nonexistent, especially in real-time settings. This study developed a method to detect barge traffic on inland waterways using existing traffic cameras with opportune viewing angles. Deep learning models You Only Look Once (YOLO), Single Shot MultiBox Detector (SSD), and EfficientDet were employed to detect the presence of vessels/barges from video and classify them (no vessel or barge, vessel without barge, vessel with barge, barge). A dataset of 331 annotated images was collected from five existing traffic cameras along the Mississippi and Ohio Rivers for model development. YOLOv8 achieved an F1-score of 96%, outperforming YOLOv5, SSD, and EfficientDet at 86%, 79%, and 77%, respectively. Sensitivity analysis was carried out for weather conditions (rain, fog) and location (Mississippi and Ohio River). A background subtraction technique normalized the video images across the various locations for the location sensitivity analysis. This model could be used to detect the presence of barges along river segments, which could be used for anonymous bulk commodity tracking and monitoring. Such data are valuable for long-range transportation planning efforts carried out by public transportation agencies, and for operational and maintenance planning conducted by federal agencies such as the U.S. Army Corps of Engineers.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3